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1. INTRODUCTION

The present work is concerned with analytical determination

of the effective elastic moduli of a unidirectional fiber com-

posite which contains a distribution of parallel cracks, either

in fiber direction or normal to the fibers (but not both kinds

at the same time). The cracked material is viewed as a homo-

geneous orthotropic sheet which contains cracks, the orthotropic

moduli being the effective elastic moduli of the fiber composite.

The presence of cracks reduces these moduli to an extent to be

determined.

This problem is related to quantification of fatigue damage

in unidirectional fiber composites. During load cycling cracks

appear and grow. The reduction of moduli after a number of

cycles is often referred to as wearout. If a reliable predic-

tion of moduli reduction in terms of crack distribution is avail-

able then experimental determination of such reduction, which is

not difficult to accomplish, provides a measure of the extent of

crack formation, thus of the damage and possibly of the residual

strength.

The general problem of analytical determination of the elastic

moduli of a cracked solid has received repeated attention, but not

many exact results are available. Most of these are concerned

with the case of a small number of non-interacting cracks in which

situation the problem is easily solved [1-8]. The case of a

periodic plane array of cracks arranged in a rectangular pattern

has been treated by a combination of analytical and numerical

methods in [9].
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In addition, a general approximate method known as the

"self consistent scheme"(SCS) has been applied to the case of

randomly distributed elliptical cracks in an isotropic medium

[101 as well as to the case of an oriented pattern of penny

shaped cracks [11]. The basic assumption underlying the SCS

is that any crack "sees" the effective homogeneous medium and

thus the energy change due to the presence of any crack is com-

puted as if this crack were placed in an infinite homogeneous

medium whose elastic moduli are the effective moduli of the

material with many cracks. This assumption is of questionable

validity since any crack "sees" matrix and neighboring cracks.

It is only on a sufficiently large scale of magnitude that the

effective property concept becomes useful, thus for a region

containing many cracks, not for a crack neighborhood.

As will be seen further on, computation of effective elastic

moduli of an elastic body containing a distribution of cracks

requires the determination of the energy change due to a crack in

the presence of other interacting cracks. A general solution of

this problem does not seem possible. It can be carried out ana-

lytically, for non-interacting cracks, or numerically, for a

specific periodic crack geometry. Consequently, the approach

adopted here is to construct bounds on the effective moduli by

use of variational principles.

2. DIRECT APPROACHES

Consider a unidirectional reinforced layer specimen which

contains a distribution of parallel cracks, Fig. 1. It is as-

sumed that the layer is statistically homogeneous which implies
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that any sufficiently large portion of it has the same effective

elastic properties as the entire specimen.

The elastic moduli of the uncracked material are

EA - Young's modulus in fiber direction

VA - Associated Poisson's ratio

ET - Young's modulus transverse to fibers

GA - Shear modulus

If the specimen is subjected to average plane stress its

effective stress strain relations are

11 V12 -

22 - * 22E*1

c22 12a + a22 (2.1)
E- * 1  1 E2

" °12

12 2G1 2*

where overbars denote specimen averages and asteriks denote

effective elastic moduli of cracked material.

A little reflection will show that

S A (2.2)

V1 2  - VA

since a homogeneous uniaxial stress field in x1 direction and its

associated strains are not affected by cracks in x1 direction.

Similarly, if the cracks were all parallel to the x2 direction

E2 and v 2 1 " would be equal to ET and VTA, respectively.

.. ....i. ..: I. ..,, .. ... .. .' .......tl '| I [1. ...I I II U . ... .
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By the definition (2.1) it follows that in order to compute

an effective elastic modulus it is necessary to compute the aver-

age strain due to an applied traction in the presence of cracks.

In the case of a general distribution of cracks, this may be

considered an intractable problem.

An alternative and equivalent definition is in terms of

stored elastic energy. For applied stresses F22, 01 2, each

separately, we have

-2 -2

U a 1 a 22 1 a2 2  AU(
2 - Y E- +  U 25

n

-- 2

UT 1 12 1 42 + AU" (2.4)
2 G1 2  GA

n
AU = AUnT

where Ua denotes stress energy per unit area of specimen and AUa,

AU T are energy changes due to any one crack, in the presence ofn

the others, in a tension or a shear field, respectively.

When the number of cracks is small and it can be assumed that

their mutual interaction is negligible, the energy change AUa

can be determined as if any crack were isolated in an infinite

orthotropic sheet under the pertinent state of stress. In that

case we have, [12].

a a 2  2 1 1 1 VA 1/2
AU "22 2GA R A  (2.S)

T A
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-,r2 &2  1 1 1 'A l/2

A=A rA

Consequently the small concentration results assume the forms:

E 2I

E2

T l~r~~1 + 1 VA 1/2~1 r+ -AA - EA I]2

1+A"_ T CA['

(2.6)

G12 1

T ~ ~..A 1 1 V 1/2

A AE 2GA A

where

a 1 nan2  (2.7)
9nn

and S is the surface of the specimen. Thus a is a measure of the

crack density per unit area.

According to the SCS approximation the energy change due to a

crack is computed as if the crack were imbedded in the effective

material. Therefore in this case we have

AUn a W an 2 2  1 [ 1 + 1 _12 1/2

212 1 1 (2.8)

ALIT a 7ran 2 F12 L 1 + I - V12  112

~'2~71 2j j G1 2  E1

which results in the following approximation relation for the ef-

fective moduli E2 * and G1 2*, [131.
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E 1 / 1 1 VA 1/2

TT 2G 12  EA

(2.9)

G12 G 12 1 1 VA 1/2A = 1 - [ +]

UA 
AA2+ 2G12* EA

3. VARIATIONAL APPROACHES

Bounds on the effective elastic moduli can be obtained by use

of the elasticity extremum principles. The elastic energies

(2.3-4) can be bounded by use of the principles of minimum poten-

tial and minimum complementary energy. For this purpose it is

necessary to construct suitable admissible fields for displace-

ments or for stresses.

Consider a rectangular cracked specimen under uniaxial stress

transverse to the cracks, Fig. 2. The boundary conditions are

*12 (± 1, x2 ) = 0

* 22 (Xl' ±t2) = ao (3.1)

a12 (Xl, , 2 ) = o

On all crack surfaces

022 ' 012 = 0 (3.2)

An admissible desplacement 0ii(xlx 2 ) field must be continuous

everywhere and satisfy all displacement boundary conditions. In

the present case the boundary conditions are (3.1-2), thus all

four transactions, and therefore an admissible displacement must

merely be continuous.

An admissible stress field aij(Xlx 2 ) must satisfy equilibrium
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everywhere and the traction boundary conditions (3.1-2) There-

fore the construction of admissible stress fields is much more

difficult than that of admissible displacement fields, in the

present case.

The displacement field

nal

where u. 0 are the displacements due to the applied stresses in

the uncracked body and u. i' the perturbation displacement field

of the n-th crack as if it were isolated in an infinite body, is

an admissible displacement field for the given problem, since it

is continuous everywhere. It is shown in Appendix A that this

field leads to the result that the small concentration approxi-

mations (2.6) are upper bounds on the effective elastic moduli

for any crack distribution. Thus

-~ ___vA 1/2T 1 + WT V~~ [ + T67 E

(3.4)

G < 1

A + T = 1 1 V A 1/2a

In order to obtain lower bounds an admissible stress field

has to be constructed. If we divide the specimen of Fig. 2 into

smaller rectangles, each one containing one central crack,
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the solution of the problem of one such finite cracked rectangle

under uniaxial tension (Fig. 3) is an admissible stress field

for the problem described in Fig. 2, since it satisfies equilib-

rium and traction boundary conditions on all the cracks.

The problem of Fig. 3 was solved numerically [14] and the

stress intensity factor K was given as a function of the geomet-

rical parameters a, b and c and the elastic properties of the

orthotropic body. Using this result in the principle of minimum

complementary energy as described in Appendix B, a lower bound on

E2  is obtained.

H2 >135 + T+1 A 1/2f2 (3.5)

where f implies f(a,b,c, material properties) and is given in [14].

It appears, that a corresponding solution of a finite centrally

cracked rectangle under pure shear is not available; thus no lower

bound on G12* can be given here.

4. DISCUSSION

It has been shown that the upper bounds for the effective

elastic moduli of unidirectional composites can be determined by

use of the variational theorems of the theory of elasticity.

These bounds are general and easy to calculate. The lower bounds

are more problematic and can be contructed only for special cases.

All of the results obtained for elastic moduli of a cracked

orthotropic layer are illustrated by application to a typical
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glass fiber-polyester matrix unidirectional composite.

The elastic properties of the uncracked material are:

EA 26.4 GPa; E 7.17 GPa; GA 5.12 GPa; vA .267

Using these constants in Eq. (2-9), (3-4), and (3-5) the various

results for E2 /EA and G12 /GA as a function of a have been

obtained (Fig. 4 and Fig. 5). For E2 /ET upper and lower bounds

have been constructed. However only an upper bound is avail-

able for G12 /GA*

In the case E2 upper and lower bounds are reasonably close;

the lower bound being higher than the SCS approximation. The

lower bound and G1 2 is very close to the SCS approximation.

The present results can be incorporated into analysis of

laminates with cracked layers by use of the effective moduli re-

sults for any one cracked layer.

Measurement of reduction of the effective elastic moduli

(wearout) during cycling can, in conjunction with present re-

sults, serve to estimate the crack damage in layers by evaluation

of the a parameters.
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APPENDIX A

UPPER BOUNDS FOR EFFECTIVE MODULI

The displacement solution of one crack in an infinite body

under tension is well known [15] and can be expressed as

u = u. + u' (A-1)

where ui° is the displacement associated with the applied stress

in the uncracked body and ui' is the perturbation field due to

the crack. The displacement perturbation ui goes to zero at

infinity and is continous everywhere in the body.

It follows that

N
fi = ui ° + n (ui')n (A-2)

is an admissible displacement field for the problem of the body

containing N cracks since it is evidently continuous everywhere

and boundary conditions on the cracks need not be satisfied

since these are traction free, thus a traction prescribed

boundary.

The strain and stress fields, associated with Qi are

1 . + 1 0 N . 1

ij (ii + ij i = Eij n=l ijn (A-3)

and
N

ij- Cijkl Eij = a ij + n (Oij')n (A-4)

The potential energy functional can be expressed as

Op a 7-ij i nj 51 ds (A-5)

V

Substituting (A-2), (A-3) and (A-4) into (A-S) it can be shown



A-2

that

up -U1 0 n (A-6)
n

where Uo is the strain energy of the uncracked body and AUn  is

the potential energy release due to ene crack of length an in an

infinite body. The substitution of Eq. (A-6) into the inequality

Up > Up (A-7)

which is essentially the principle of minimum potential energy,

leads to the conclusion that the results for small concentration

of cracks are upper bounds on the effective moduli for any crack

distribution.



APPENDIX B

As explained in the text the solution to the problem of Fig.

3 is an admissible stress field, for the problem of Fig. 2.

From [141 the stress intensity factor is known as a function of

the length of the crack, the dimensions of the rectangle and the

elastic moduli of the uncracked body. For a rectangle of dimen-

sions bn , cn containing a crack of length an this result is

Kn = a 0 fn (an 'bn'cn' elastic moduli) (B-1)

The increase in stress energy functional (which is a special

case of the complementary energy functional) due to the cracks

is thus [12]

vA 1/2

AUo a -Iw anKn 2 1 [ 1 + 1 VA (B-2)
n nn AT A

The stress energy functional can be written as

U U + AU (B-3)
0

where Uo is the stress energy of the cracked body. Introducing
0

(B-3) into the-minimum stress energy (complementary energy)

principle

UO <Lc, (B-4)

and using (2.3) and (2.5) the bound (3.5) follows.

09 AL



x?

Fig. 1. Cracked Unidirectional Composite

2t? 2

2 J,

Fig. 2. Cracked Specimen under Transverse Stress

X2

Fig. 3. Finite Recctiglc with a Central Crack
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Fig. 4 Results for r; and v2 * Glass-Polyester.
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Fig. 5 Results for c12 Glass-Polyester.


